how do you do that the character has the third person turning in the direction of the mouse pointer? (as in the game "Hotline Miami 2")

if there are French to answer me it is perfect !

Sorry I don’t speak French. I don’t know if it’s the best way but you could do a raycast screenpointtoray(input.mouseposition) if your floor has a tag and collider on it then get the hit data like if(raycast.physics(ray, out hit)) and make a new Vector3 (hit.point.x, transfom.position.y, hit.point.z) and then get your player object and if you want it to instantly turn with the mouse you can use Vector3.lookat(the vector3 you made) or if you want the player to turn smoothly then maybe use Vector3.rotatetowards or quaternion.slerp or smoothdamp.
Hope this helps, sorry it was a bit of a rough answer I was away from my computer and this is just off the top of my head. Hope you can understand my English :slight_smile:

@Symons
First, thank you for your help.
now I understood how it works. Now the problem is that I use Unity since 2-3 days and I don’t know how to correctly write this and where should I include these lines of code:

using UnityEngine;

namespace UnityStandardAssets.Characters.ThirdPerson
{
	[RequireComponent(typeof(Rigidbody))]
	[RequireComponent(typeof(CapsuleCollider))]
	[RequireComponent(typeof(Animator))]
	public class ThirdPersonCharacter : MonoBehaviour
	{
		[SerializeField] float m_MovingTurnSpeed = 360;
		[SerializeField] float m_StationaryTurnSpeed = 180;
		[SerializeField] float m_JumpPower = 12f;
		[Range(1f, 4f)][SerializeField] float m_GravityMultiplier = 2f;
		[SerializeField] float m_RunCycleLegOffset = 0.2f; //specific to the character in sample assets, will need to be modified to work with others
		[SerializeField] float m_MoveSpeedMultiplier = 1f;
		[SerializeField] float m_AnimSpeedMultiplier = 1f;
		[SerializeField] float m_GroundCheckDistance = 0.1f;

		Rigidbody m_Rigidbody;
		Animator m_Animator;
		bool m_IsGrounded;
		float m_OrigGroundCheckDistance;
		const float k_Half = 0.5f;
		float m_TurnAmount;
		float m_ForwardAmount;
		Vector3 m_GroundNormal;
		float m_CapsuleHeight;
		Vector3 m_CapsuleCenter;
		CapsuleCollider m_Capsule;
		bool m_Crouching;


		void Start()
		{
			m_Animator = GetComponent<Animator>();
			m_Rigidbody = GetComponent<Rigidbody>();
			m_Capsule = GetComponent<CapsuleCollider>();
			m_CapsuleHeight = m_Capsule.height;
			m_CapsuleCenter = m_Capsule.center;

			m_Rigidbody.constraints = RigidbodyConstraints.FreezeRotationX | RigidbodyConstraints.FreezeRotationY | RigidbodyConstraints.FreezeRotationZ;
			m_OrigGroundCheckDistance = m_GroundCheckDistance;
		}


		public void Move(Vector3 move, bool crouch, bool jump)
		{

			// convert the world relative moveInput vector into a local-relative
			// turn amount and forward amount required to head in the desired
			// direction.
			if (move.magnitude > 1f) move.Normalize();
			move = transform.InverseTransformDirection(move);
			CheckGroundStatus();
			move = Vector3.ProjectOnPlane(move, m_GroundNormal);
			m_TurnAmount = Mathf.Atan2(move.x, move.z);
			m_ForwardAmount = move.z;

			ApplyExtraTurnRotation();

			// control and velocity handling is different when grounded and airborne:
			if (m_IsGrounded)
			{
				HandleGroundedMovement(crouch, jump);
			}
			else
			{
				HandleAirborneMovement();
			}

			ScaleCapsuleForCrouching(crouch);
			PreventStandingInLowHeadroom();

			// send input and other state parameters to the animator
			UpdateAnimator(move);
		}


		void ScaleCapsuleForCrouching(bool crouch)
		{
			if (m_IsGrounded && crouch)
			{
				if (m_Crouching) return;
				m_Capsule.height = m_Capsule.height / 2f;
				m_Capsule.center = m_Capsule.center / 2f;
				m_Crouching = true;
			}
			else
			{
				Ray crouchRay = new Ray(m_Rigidbody.position + Vector3.up * m_Capsule.radius * k_Half, Vector3.up);
				float crouchRayLength = m_CapsuleHeight - m_Capsule.radius * k_Half;
				if (Physics.SphereCast(crouchRay, m_Capsule.radius * k_Half, crouchRayLength, Physics.AllLayers, QueryTriggerInteraction.Ignore))
				{
					m_Crouching = true;
					return;
				}
				m_Capsule.height = m_CapsuleHeight;
				m_Capsule.center = m_CapsuleCenter;
				m_Crouching = false;
			}
		}

		void PreventStandingInLowHeadroom()
		{
			// prevent standing up in crouch-only zones
			if (!m_Crouching)
			{
				Ray crouchRay = new Ray(m_Rigidbody.position + Vector3.up * m_Capsule.radius * k_Half, Vector3.up);
				float crouchRayLength = m_CapsuleHeight - m_Capsule.radius * k_Half;
				if (Physics.SphereCast(crouchRay, m_Capsule.radius * k_Half, crouchRayLength, Physics.AllLayers, QueryTriggerInteraction.Ignore))
				{
					m_Crouching = true;
				}
			}
		}


		void UpdateAnimator(Vector3 move)
		{
			// update the animator parameters
			m_Animator.SetFloat("Forward", m_ForwardAmount, 0.1f, Time.deltaTime);
			m_Animator.SetFloat("Turn", m_TurnAmount, 0.1f, Time.deltaTime);
			m_Animator.SetBool("Crouch", m_Crouching);
			m_Animator.SetBool("OnGround", m_IsGrounded);
			if (!m_IsGrounded)
			{
				m_Animator.SetFloat("Jump", m_Rigidbody.velocity.y);
			}

			// calculate which leg is behind, so as to leave that leg trailing in the jump animation
			// (This code is reliant on the specific run cycle offset in our animations,
			// and assumes one leg passes the other at the normalized clip times of 0.0 and 0.5)
			float runCycle =
				Mathf.Repeat(
					m_Animator.GetCurrentAnimatorStateInfo(0).normalizedTime + m_RunCycleLegOffset, 1);
			float jumpLeg = (runCycle < k_Half ? 1 : -1) * m_ForwardAmount;
			if (m_IsGrounded)
			{
				m_Animator.SetFloat("JumpLeg", jumpLeg);
			}

			// the anim speed multiplier allows the overall speed of walking/running to be tweaked in the inspector,
			// which affects the movement speed because of the root motion.
			if (m_IsGrounded && move.magnitude > 0)
			{
				m_Animator.speed = m_AnimSpeedMultiplier;
			}
			else
			{
				// don't use that while airborne
				m_Animator.speed = 1;
			}
		}


		void HandleAirborneMovement()
		{
			// apply extra gravity from multiplier:
			Vector3 extraGravityForce = (Physics.gravity * m_GravityMultiplier) - Physics.gravity;
			m_Rigidbody.AddForce(extraGravityForce);

			m_GroundCheckDistance = m_Rigidbody.velocity.y < 0 ? m_OrigGroundCheckDistance : 0.01f;
		}


		void HandleGroundedMovement(bool crouch, bool jump)
		{
			// check whether conditions are right to allow a jump:
			if (jump && !crouch && m_Animator.GetCurrentAnimatorStateInfo(0).IsName("Grounded"))
			{
				// jump!
				m_Rigidbody.velocity = new Vector3(m_Rigidbody.velocity.x, m_JumpPower, m_Rigidbody.velocity.z);
				m_IsGrounded = false;
				m_Animator.applyRootMotion = false;
				m_GroundCheckDistance = 0.1f;
			}
		}

		void ApplyExtraTurnRotation()
		{
			// help the character turn faster (this is in addition to root rotation in the animation)
			float turnSpeed = Mathf.Lerp(m_StationaryTurnSpeed, m_MovingTurnSpeed, m_ForwardAmount);
			transform.Rotate(0, m_TurnAmount * turnSpeed * Time.deltaTime, 0);
		}


		public void OnAnimatorMove()
		{
			// we implement this function to override the default root motion.
			// this allows us to modify the positional speed before it's applied.
			if (m_IsGrounded && Time.deltaTime > 0)
			{
				Vector3 v = (m_Animator.deltaPosition * m_MoveSpeedMultiplier) / Time.deltaTime;

				// we preserve the existing y part of the current velocity.
				v.y = m_Rigidbody.velocity.y;
				m_Rigidbody.velocity = v;
			}
		}


		void CheckGroundStatus()
		{
			RaycastHit hitInfo;
#if UNITY_EDITOR
			// helper to visualise the ground check ray in the scene view
			Debug.DrawLine(transform.position + (Vector3.up * 0.1f), transform.position + (Vector3.up * 0.1f) + (Vector3.down * m_GroundCheckDistance));
#endif
			// 0.1f is a small offset to start the ray from inside the character
			// it is also good to note that the transform position in the sample assets is at the base of the character
			if (Physics.Raycast(transform.position + (Vector3.up * 0.1f), Vector3.down, out hitInfo, m_GroundCheckDistance))
			{
				m_GroundNormal = hitInfo.normal;
				m_IsGrounded = true;
				m_Animator.applyRootMotion = true;
			}
			else
			{
				m_IsGrounded = false;
				m_GroundNormal = Vector3.up;
				m_Animator.applyRootMotion = false;
			}
		}
	}
}